As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Classical propositional logic is an appealing option for modelling argumentation but the computational viability of generating an argument is an issue. Here we propose ameliorating this problem by harnessing the notion of a connection graph to reduce the search space when seeking all the arguments for a claim from a knowledgebase. For a set of clauses, a connection graph is a graph where each node is a clause and each arc denotes that there exist complementary disjuncts in the pair of nodes. For a set of formulae in conjunctive normal form, we use the notion of the connection graph for the set of clauses obtained from the conjuncts in the formulae. When seeking arguments for a claim, we can focus our search on a particular subgraph of the connection graph that we call the focal graph. Locating this subgraph is relatively inexpensive in terms of computational cost. In addition, using (as the search space) the formulae of the initial knowledgebase, whose conjuncts relate to this subgraph, can substantially reduce the cost of looking for arguments. We provide a theoretical framework and algorithms for this proposal, together with some theoretical results and some preliminary experimental results to indicate the potential of the approach.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.