As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
A reinforcement architecture is introduced that consists of three complementary learning systems with different generalization abilities. The ACTOR learns state-action associations, the CRITIC learns a goal-gradient, and the PUNISH system learns what actions to avoid. The architecture is compared to the standard actor-crititc and Q-learning models on a number of maze learning tasks. The novel architecture is shown to be superior on all the test mazes. Moreover, it shows how it is possible to combine several learning systems with different properties in a coherent reinforcement learning framework.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.