As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Area under the receiver operating characteristics curve (AUC) is a popular measure for evaluating the quality of binary classifiers, and intuitively, machine learning algorithms that maximize an approximation of AUC should have a good AUC performance when classifying new examples. However, designing such algorithms in the framework of kernel methods has proven to be challenging. In this paper, we address AUC maximization with the regularized least-squares (RLS) algorithm also known as the least-squares support vector machine. First, we introduce RLS-type binary classifier that maximizes an approximation of AUC and has a closed-form solution. Second, we show that this AUC-RLS algorithm is computationally as efficient as the standard RLS algorithm that maximizes an approximation of the accuracy. Third, we compare the performance of these two algorithms in the task of assigning topic labels for newswire articles in terms of AUC. Our algorithm outperforms the standard RLS in every classification experiment conducted. The performance gains are most substantial when the distribution of the class labels is unbalanced. In conclusion, modifying the RLS algorithm to maximize the approximation of AUC does not increase the computational complexity, and this alteration enhances the quality of the classifier.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.