As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This study introduces the conformal prediction framework to the task of predicting the presence of adverse drug events in electronic health records with an associated measure of statistically valid confidence. The imbalanced nature of the problem was addressed both by evaluating different machine learning algorithms, and by comparing different types of conformal predictors. A novel solution was also evaluated, where different underlying models, each model optimized towards one particular class, were combined into a single conformal predictor. This novel solution proved to be superior to previously existing approaches.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.