As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Dynamic Bayesian modeling for risk prediction in credit operations
Hanen Borchani, Ana M. Martínez, Andrés R. Masegosa, Helge Langseth, Thomas D. Nielsen, Antonio Salmerón, Antonio Fernández, Anders L. Madsen, Ramón Sáez
In this paper we perform an exploratory analysis of a financial data set from a Spanish bank. Our goal is to do risk prediction in credit operations, and as data is collected continuously and reported on a monthly basis, this gives rise to a streaming data classification problem. Our analysis reveals some practical problems that have not previously been thoroughly analyzed in the context of streaming data analysis: the class labels are not immediately available and the relevant predictive features and entities under study (in this case the set of customers) may vary over time. In order to address these problems, we propose to use a dynamic classifier with a wrapper feature subset selection to find relevant features at different time steps. The proposed model is a special case of a more general framework that can also accommodate more expressive models containing latent variables as well as more sophisticated feature selection schemes.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.