As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Metric learning has been shown to outperform standard classification based similarity learning in a number of different contexts. In this paper, we show that the performance of classification similarity learning strongly depends on the sample format used to learn the model. We also propose an enriched classification based set-up that uses a set of standard distances to supplement the information provided by the feature vectors of the training samples. The method is compared to state-of-the-art metric learning methods, using a linear SVM for classification. Results obtained show comparable performances, slightly in favour of the method proposed.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.