As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Twitter has become one of the most popular Location-Based Social Networks (LBSNs) that enables bridging physical and virtual worlds. Tweets, 140-character-long messages published in Twitter, are aimed to provide basic responses to the What's happening? question. Occurrences and events in the real life are usually reported through geo-located tweets by users on site. Uncovering event-related tweets from the rest is a challenging problem that necessarily requires exploiting different tweet features. With that in mind, we propose Tweet-SCAN, a novel event discovery technique based on the density-based clustering algorithm called DB-SCAN. Tweet-SCAN takes into account four main features from a tweet, namely content, time, location and user to cluster homogeneously event-related tweets. This new technique models textual content through a probabilistic topic model called Hierarchical Dirichlet Process and introduces Jensen-Shannon distance for the task of neighborhood identification in the textual dimension. As a matter of fact, we show Tweet-SCAN performance in a real data set of geo-located tweets posted during Barcelona local festivities in 2014, for which some of the events were known beforehand. By means of this data set, we are able to assess Tweet-SCAN capabilities to discover events, justify using a textual component and highlight the effects of several parameters.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.