As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Whereas symbol-based systems, like deductive reasoning devices, knowledge bases, planning systems, or tools for solving constraint satisfaction problems, presuppose (more or less) the consistency of data and the consistency of results of internal computations, this is far from being plausible in real-world applications, in particular, if we take natural agents into account. Furthermore in complex cognitive systems, that often contain a large number of different modules, inconsistencies can jeopardize the integrity of the whole system. This paper addresses the problem of resolving inconsistencies in hybrid cognitively inspired systems on both levels, in single processing modules and in the overall system. We propose the hybrid architecture I-Cog as a flexible tool, that is explicitly designed to reorganize knowledge constantly and use occurring inconsistencies as a non-classical learning mechanism.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.