As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Behavioral analysis, based on unobtrusive monitoring through environmental sensors, is expected to increase health awareness of AAL systems. In this paper, techniques for assessing behavioral quantitative features are discussed, suitable for detecting behavioral anomalies in an unsupervised fashion, i.e., with no need of defining target reference behaviors and of tuning user-specific threshold parameters. Such technique is being exploited for analyzing data coming from a set of European pilot sites, in the framework of the EU/AAL-JP project “FOOD”, specifically focused at kitchen activity. Simple results are illustrated, suitable for proof-of-concept validation.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.