As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Learning ontologies requires the acquisition of relevant domain concepts and taxonomic, as well as non-taxonomic, relations. In this chapter, we present a methodology for automatic ontology enrichment and document annotation with concepts and relations of an existing domain core ontology. Natural language definitions from available glossaries in a given domain are processed and regular expressions are applied to identify general-purpose and domain-specific relations. We evaluate the methodology performance in extracting hypernymy and non-taxonomic relations. To this end, we annotated and formalized a relevant fragment of the glossary of Art and Architecture (AAT) with a set of 10 relations (plus the hypernymy relation) defined in the CRM CIDOC cultural heritage core ontology, a recent W3C standard. Finally, we assessed the generality of the approach on a set of web pages from the domains of history and biography.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.