As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Ontology Learning is up to now dominated by techniques which use text as input. There are only few methods which use a different data source. The techniques which use highly structured data as input have the disadvantage that such data sources are rare. On the other side, there are enormous amounts of Web content present today.
We present the XTREEM (Xhtml TREE Mining) methods which enable Ontology Learning from Web Documents. Those methods rely on the semi-structure of Web Documents. The added value of Web document markup is exploited by the XTREEM methods. We show methods for the acquisition of terms, synonyms and semantic relations.
The XTREEM techniques are based on the structure of Web documents; they are domain and language independent. There is no need for NLP software nor for training. They do not rely on domain or document collection specific resources or background knowledge, such as patterns, rules or other heuristics; nor do they rely on manually assembling a document collection.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.