As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Non-contact measurements of cardiac pulse can provide robust measurement of heart rate (HR) without the annoyance of attaching electrodes to the body. In this paper we explore a novel and reliable method to carry out video-based HR estimation and propose various performance improvement over existing approaches. The investigated method uses Independent Component Analysis (ICA) to detect the underlying HR signal from a mixed source signal present in the RGB channels of the image. The original ICA algorithm was implemented and several modifications were explored in order to determine which one could be optimal for accurate HR estimation. Using statistical analysis, we compared the cardiac pulse rate estimation from the different methods under comparison on the extracted videos to a commercially available oximeter. We found that some of these methods are quite effective and efficient in terms of improving accuracy and latency of the system. We have made the code of our algorithms openly available to the scientific community so that other researchers can explore how to integrate video-based HR monitoring in novel health technology applications. We conclude by noting that recent advances in video-based HR monitoring permit computers to be aware of a user's psychophysiological status in real time.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.