As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Survival time prediction at the time of diagnosis is of great importance to make decisions about treatment and long-term follow-up care. However, predicting the outcome of cancer on the basis of clinical information is a challenging task. We now examined the ability of ten different data mining algorithms (Perceptron, Rule Induction, Support Vector Machine, Linear Regression, Naïve Bayes, Decision Tree, k-nearest Neighbor, Logistic Regression, Neural Network, Random Forest) to predict the dichotomous attribute “5-year-survival” based on seven attributes (sex, UICC-stage, etc.) which are available at the time of diagnosis. For this study we made use of the nationwide German research data set on colon cancer provided by the Robert Koch Institute. To assess the results a comparison between data mining algorithms and physicians' opinions was performed. Therefore, physicians guessed the survival time by leveraging the same seven attributes. The average accuracy of the physicians' opinion was 59%, the average accuracy of the machine learning algorithms was 67.7%.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.