As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The goal of this paper is twofold. First, to provide a self contained, detailed and rigorous mathematical introduction to some aspects of the quantum error-correcting codes and especially quantum stabilizer codes and their connection to self-orthogonal linear codes. This has been done without venturing that much, if at all, into the world of physics. While most of the results presented are not new, it is not easy to extract a precise mathematical formulation of results and to provide their rigorous proofs by reading the vast number of papers in the field, quite a few of which are written by computer scientists or physicists. It is this formulation and proofs, some of which are new, that we present here. Techniques from algebra of finite fields as well as representations of finite abelian groups have been employed. The second goal is the construction of some stabilizer codes via self-orthogonal linear codes associated to algebraic curves.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.