As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
A rigorous and robust algorithm is presented for solving the electromagnetic scattering problems in the planar multilayered anisotropic and composite media. The Lippman-Schwinger integral formulation is exploited and integrated with the wave iterative technique in the derivation of the spectral-domain state equation. The presented algorithm relies on the accurate expressions of the dyadic Green's function and the introduction of polarization tensor. The Padua-Domínguez interpolation-integration technique is used for improving the computational efficiency. Then, the MUltiple SIgnal Classification (MUSIC) method is utilized for dealing with the inverse imaging problem for the planar multilayered composite structure. The validity of the presented algorithm and the effectiveness of the inverse imaging are verified through numerical examples.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.