As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Virtual Histology Intravascular Ultrasound (VH-IVUS) is a clinically available for visualizing color coded of coronary artery plaque. However, current VH-IVUS image processing techniques have not considered the combinations of features to identify vulnerable plaque. This paper presents a new method for classification of TCFA (thin-cap fibroatheromas) and Non-TCFA plaque based on combined features using the VH-IVUS images using support vector machine (SVM). The proposed method is applied to 546 in-vivo VH-IVUS images. Results proved the dominance of our proposed method with accuracy rates of 98.15% for TCFA.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.