As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Translating huge medical terminologies like SNOMED CT is costly and time consuming. We present a methodology that acquires substring substitution rules for single words, based on the known similarity between medical words and their translations, due to their common Latin / Greek origin. Character translation rules are automatically acquired from pairs of English words and their automated translations to German. Using a training set with single words extracted from SNOMED CT as input we obtained a list of 268 translation rules. The evaluation of these rules improved the translation of 60% of words compared to Google Translate and 55% of translated words that exactly match the right translations. On a subset of words where machine translation had failed, our method improves translation in 56% of cases, with 27% exactly matching the gold standard.