As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper discusses the application of an unsupervised text mining technique for the extraction of information from clinical records in Italian. The approach includes two steps. First of all, a metathesaurus is exploited together with natural language processing tools to extract the domain entities. Then, clustering is applied to explore relations between entity pairs. The results of a preliminary experiment, performed on the text extracted from 57 medical records containing more than 20,000 potential relations, show how the clustering should be based on the cosine similarity distance rather than the City Block or Hamming ones.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.