As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper presents a comparative study over the respiratory pattern classification task involving three missing data imputation techniques, and four different machine learning algorithms. The main goal was to find a classifier that achieves the best accuracy results using a scalable imputation method in comparison to the method used in a previous work of the authors. The results obtained show that the Self-organization maps imputation method allows any classifier to achieve improvements over the rest of the imputation methods, and that the Feedforward neural network classifier offers the best performance regardless the imputation method used.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.