As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Generally, current clinical imaging methods do not provide highly detailed information about location of axonal injury, severity of injury or expected recovery of patients with traumatic brain injury (TBI). High-Definition Fiber Tractography (HDFT) is a novel imaging modality that allows visualizing and quantifying, directly, the degree of axons damage, predicting functional deficits due to traumatic axonal injury and loss of cortical projections. This imaging modality is based on diffusion technology. Being a novel modality, validation and quality control are essential. Thus this study aims at the development of a brain phantom to mimic the human brain in order to fill some gaps that currently exist in this area. This paper is focused on this novel imaging approach, the role of brain phantoms on its validation and the quality control, as well as, on the materials used in their construction. Furthermore, some important characteristics of fibrous materials for brain phantom are also discussed.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.