As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Text from social media is significant key information to understand social movement. However, the length of the social media text is typically short and concise with a lot of absent words. Our task is to identify the proper keyword representing the message content that we are accounting for. Instead of training the model for keyword extraction directly from the Twitter messages, we propose a new method to fine-tune the model trained from some known documents containing richer context information. We conducted the experiment on Twitter messages and expressed in word cloud timeline. It shows a promising result.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.