As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper is divided into three parts. In the first, we demonstrate that all of quantum mechanics can be derived from the fundamental property that the propagation of a matter-wave packet is described by the same gravitational and kinematic time dilation that applies to a clock. We will do so in several steps, first deriving the Schroedinger equation for a non-relativistic particle without spin in a weak gravitational potential, and eventually the Dirac equation in curved space-time describing the propagation of a relativistic particle with spin in strong gravity. In the second part, we present interesting consequences of the above quantum mechanics: that it is possible to use wave packets as a reference for a clock, to test general relativity, and to realize a mass standard based on a proposed redefinition of the international system of units, wherein the Planck constant would be assigned a fixed value. The clock achieved an absolute accuracy of 4 parts per billion (ppb). The experiment yields the fine structure constant α=7.297 352 589(15)×10−3 with 2.0 ppb accuracy. We present improvements that have reduced the leading systematic error about 8-fold and improved the statistical uncertainty to 0.33 ppb in 6 hours of integration time, referred to α. In the third part, we present possible future experiments with atom interferometry: A gravitational Aharonov-Bohm experiment and its application as a measurement of Newton's gravitational constant, antimatter interferometry, interferometry with charged particles, and interferometry in space. We will give a review of previously published material when appropriate, but will focus on new aspects that have not been published before.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.