As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this work we build a system for automatic emotion classification from image sequences. We analyze subtle changes in facial expressions by detecting a subset of 12 representative facial action units (AUs). Then, we classify emotions based on the output of these AUs classifiers, i.e. the presence/absence of AUs. We base the AUs classification upon a set of spatio-temporal geometric and appearance features for facial representation, fusing them within the emotion classifier. A decision tree is trained for emotion classifying, making the resulting model easy to interpret by capturing the combination of AUs activation that lead to a particular emotion. For Cohn-Kanade database, the proposed system classifies 7 emotions with a mean accuracy of near 90%, attaining a similar recognition accuracy in comparison with non-interpretable models that are not based in AUs detection.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.