As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
By increasing popularity of wearable cameras, life-logging data analysis is becoming more and more important and useful to derive significant events out of this substantial collection of images. In this study, we introduce a new tracking method applied to visual life-logging, called bag-of-tracklets, which is based on detecting, localizing and tracking of people. Given the low spatial and temporal resolution of the image data, our model generates and groups tracklets in a unsupervised framework and extracts image sequences of person appearance according to a similarity score of the bag-of-tracklets. The model output is a meaningful sequence of events expressing human appearance and tracking them in life-logging data. The achieved results prove the robustness of our model in terms of efficiency and accuracy despite the low spatial and temporal resolution of the data.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.