As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Reinforcement Learning (RL) provides a general methodology to solve complex uncertain decision problems, which are very challenging in many real-world applications. RL problem is modeled as a Markov Decision Process (MDP) deeply studied in the literature. We consider Policy Iteration (PI) algorithms for RL which iteratively evaluate and improve control policies. In handling problems with continuous states or in very large state spaces, generalization is mandatory. Generalization property of RL algorithms is an important factor to predict values for unexplored states. Candidates for value function approximation are Support Vector Regression (SVR) known to have good properties over the generalization ability. SVR has been used in batch frameworks in RL but, smart implementations of incremental exact SVR can extend SVR generalization ability to online RL where the expected reward from states change constantly with experience. Hence our online SVR is a novelty method which allows fast and good estimation of value function achieving RL objective very efficiently. Throughout simulation tests, the feasibility and usefulness of the proposed approach is demonstrated.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.