As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper presents a performance evaluation of a novel Vector Evaluated Gravitational Search Algorithm II (VEGSAII) for multi-objective optimization problems. The VEGSAII algorithm uses a number of populations of particles. In particular, a population of particles corresponds to one objective function to be minimized or maximized. Simultaneous minimization or maximization of every objective function is realized by exchanging a variable between populations. The results shows that the VEGSA is outperformed by other multi-objective optimization algorithms and further enhancements are needed before it can be employed in any application.