As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
One of the most important decisions researchers face when analysing software systems is the choice of a proper data analysis/exchange format. In this paper, we present EvoOnt, a set of software ontologies and data exchange formats based on OWL. EvoOnt models software design, release history information, and bug-tracking meta-data. Since OWL describes the semantics of the data, EvoOnt (1) is easily extendible, (2) can be processed with many existing tools, and (3) allows to derive assertions through its inherent Description Logic reasoning capabilities. The contribution of this paper is that it introduces a novel software evolution ontology that vastly simplifies typical software evolution analysis tasks. In detail, we show the usefulness of EvoOnt by repeating selected software evolution and analysis experiments from the 2004–2007 Mining Software Repositories Workshops (MSR). We demonstrate that if the data used for analysis were available in EvoOnt then the analyses in 75% of the papers at MSR could be reduced to one or at most two simple queries within off-the-shelf SPARQL tools. In addition, we present how the inherent capabilities of the Semantic Web have the potential of enabling new tasks that have not yet been addressed by software evolution researchers, e.g., due to the complexities of the data integration.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.