As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper presents a supervised algorithm for separating speech from background non-stationary noise (piano music) in single-channel recordings. The proposed algorithm, based on a nonnegative matrix factorization (NMF) approach, is able to extract speech sounds from isolated or chords piano sounds learning the set of spectral patterns generated by independent syllables and piano notes. Moreover, a sparsity constraint is used to improve the quality of the separated signals. Our proposal was tested using several audio mixtures composed of real-world piano recordings and Spanish speech showing promising results.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.