As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
We propose a new parallel search algorithm – A! – based on cooperating A* search agents, concurrency and a secondary tiebreaking heuristic. The search agents in A! share information asynchronously and trade some of their independence for additional search focus and a more global view of the search task. A! is inherently nondeterministic due to the implicit randomness of instruction scheduling, but given a consistent primary heuristic, it still finds optimal solutions for the single-source shortest path problem (SSSP). A! combines into a single cooperative search algorithm the breadth available in parallel execution and the depth-first orientation of both locally and globally informed search.
We experimentally show that A! outperforms both vanilla A* and an explicitly randomized, noncooperative parallel A* variant. We present an empirical study on cooperation benefits and scalability in the classic 15-puzzle context. The results imply that cooperation and concurrency can successfully be harnessed in algorithm design, inviting further inquiry into algorithms of this kind.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.