As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
An attack graph represents all known sequences of actions that compromise a system in form of an and-or graph. We assume that each action in the attack graph has a specified cost and probability of success and propose an algorithm for computing an action selection policy minimizing the expected cost of performing an attack. We model the problem as a finite horizon MDP and use forward search with transposition tables and various pruning techniques based on the structure of the attack graph. We experimentally compare the proposed algorithm to a generic MDP solver and a solver transforming the problem to an Unconstrained Influence Diagram showing a substantial runtime improvement.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.