As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
We propose a new qualitative spatial logic for reasoning about part-whole relations between geometries (sets of points) represented in different geospatial datasets, in particular crowd-sourced datasets. Since geometries in crowd-sourced data can be less inaccurate or precise, we buffer geometries by a margin of error or level of tolerance σ, and define part-whole relation for buffered geometries. The relations between geometries considered in the logic are: buffered part of (BPT), Near and Far. We provide a sound and complete axiomatisation of the logic with respect to metric models and show that its satisfiability problem is NP-complete.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.