As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Modelling preferences has been an active research topic in Artificial Intelligence for more than fifteen years. Existing formalisms are rich and flexible enough to capture the behaviour of complex decision rules. However, for being interesting in practice, it is interesting to learn not a single model, but a probabilistic model that can compactly represent the preferences of a group of users – this model can then be finely tuned to fit one particular user. Even in contexts where a user is not anonymous, her preferences can depend on the value of a non controllable state variable. In such contexts, we would like to be able to answer questions like “What is the probability that o is preferred to o′ by some (unknown) agent?”, or “Which item is most likely to be the preferred one, given some constraints?”
We study in this paper how Probabilistic Conditional Preference networks can be learnt, both in off-line and on-line settings.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.