As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
There are a lot of measures for selecting interesting itemsets. But which one is better? In this paper we introduce a methodology for evaluating interestingness measures. This methodology relies on supervised classification. It allows us to avoid experts and artificial datasets in the evaluation process. We apply our methodology to evaluate promising measures for itemset selection, such as leverage and stability. We show that although there is no evident winner between them, stability has a slightly better performance.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.