As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Research on heuristic functions is all about estimating the length (or cost) of solution paths. But what if there is no such path? Many known heuristics have the ability to detect (some) unsolvable states, but that ability has always been treated as a by-product. No attempt has been made to design heuristics specifically for that purpose, where there is no need to preserve distances. As a case study towards leveraging that advantage, we investigate merge-and-shrink abstractions in classical planning. We identify safe abstraction steps (no information loss regarding solvability) that would not be safe for traditional heuristics. We design practical algorithm configurations, and run extensive experiments showing that our heuristics outperform the state of the art for proving planning tasks unsolvable.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.