As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Recently, FO(C), the integration of C-LOG with classical logic, was introduced as a knowledge representation language. Up to this point, no systems exist that perform inference on FO(C), and very little is known about properties of inference in FO(C). In this paper, we study both of the above problems. We define normal forms for FO(C), one of which corresponds to FO(ID). We define transformations between these normal forms, and show that, using these transformations, several inference tasks for FO(C) can be reduced to inference tasks for FO(ID), for which solvers exist. We implemented this transformation and hence, created the first system that performs inference in FO(C). We also provide results about the complexity of reasoning in FO(C).