As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The Choquet integral is one of the most sophisticated and expressive preference models used in decision theory for multicriteria decision making. It performs a weighted aggregation of criterion values using a capacity function assigning a weight to any coalition of criteria, thus enabling positive and/or negative interactions among criteria and covering an important range of possible decision behaviors. However, the specification of the capacity involves many parameters which raises challenging questions, both in terms of elicitation burden and guarantee on the quality of the final recommendation. In this paper, we investigate the incremental elicitation of the capacity through a sequence of preference queries selected one-by-one using a minimax regret strategy so as to progressively reduce the set of possible capacities until a decision can be made. We propose a new approach designed to efficiently compute minimax regret for the Choquet model. Numerical experiments are provided to demonstrate the practical efficiency of our approach.