As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this paper, symmetries are exploited for achieving significant space savings in a knowledge compilation perspective. More precisely, the languages FBDD and DDG of decision diagrams are extended to the languages Sym-FBDDX,Y and Sym-DDGX,Y of symmetry-driven decision diagrams, where X is a set of “symmetry-free” variables and Y is a set of “top” variables. Both the time efficiency and the space efficiency of Sym-FBDDX,Y and Sym-DDGX,Y are analyzed, in order to put those languages in the knowledge compilation map for propositional representations. It turns out that each of Sym-FBDDX,Y and Sym-DDGX,Y satisfies CT (the model counting query). We prove that no propositional language over a set X∪Y of variables, satisfying both CO (the consistency query) and CD (the conditioning transformation), is at least as succinct as any of Sym-FBDDX,Y and Sym-DDGX,Y unless the polynomial hierarchy collapses. The price to be paid is that only a restricted form of conditioning and a restricted form of forgetting are offered by Sym-FBDDX,Y and Sym-DDGX,Y . Nevertheless, this proves sufficient for a number of applications, including configuration and planning. We describe a compiler targeting Sym-FBDDX,Y and Sym-DDGX,Y and give some experimental results on planning domains, highlighting the practical significance of these languages.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.