As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
We apply the theory of parameterised complexity to planning, using the concept of fixed-parameter tractability (fpt) which is more relaxed than the usual tractability concept. The parameter we focus on is the maximal number of paths in the domain-transition graphs, and we show that for this parameter, optimal planning is fpt for planning instances with polytree causal graphs and acyclic domain-transition graphs. If this parameter is combined with the additional parameters of domain size for the variables and the treewidth of the causal graph, then planning is fpt also for instances with arbitrary causal graphs. Furthermore, all these parameters are fpt to test in advance. These results also imply that delete-relaxed planning is fpt, even in its recent generalisation to non-binary variables.