As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this work, we consider a risk-averse maximum weighted k-club problems. It is assumed that vertices of the graph have stochastic weights whose joint distribution is known. The goal is to find the k-club of minimum risk contained in the graph. A stochastic programming framework that is based on the formalism of coherent risk measures is used to find the corresponding subgraphs. The selected representation of risk of a subgraph ensures that the optimal solutions are maximal k-clubs. A combinatorial branch-and-bound solution algorithm is proposed and solution performances are compared with an equivalent mathematical programming counterpart problem for instances with k = 2.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.