As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Forensic inferential reasoning is a “fact-finding” journey for crime investigation and evidence presentation. In complex legal practices involving various forms of evidence, conventional decision making processes based on human intuition and piece-to-piece evidence explanation often fail to reconstruct meaningful and convincing legal hypothesis. It is necessary to develop logical system for evidence management and relationship evaluations. In this paper, a forensic application-oriented inferential reasoning model has been devised base on Bayesian Networks. It provides an effective approach to identify and evaluate possible relationships among different evidence. The model has been developed into an adaptive framework than can be further extended to support information visualisation and interaction. Based on the system experiments, the model has been successfully used in verifying the logical relationships between DNA testing results and confessions acquired from the suspect in a simulated criminal investigation, which provided a firm foundation for the future developments.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.