As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Monitoring human physical activity has become an important research area and is essential to evaluate the degree of functional performance and general level of activity of a person. The discrimination of daily living activities can be implemented with machine learning techniques. A public dataset provided during the European Symposium on Artificial Neural Networks 2013, with time and frequency domain features extracted from raw signals of the smartphone inertial sensors, was used to implement and evaluate an activity classifier. Using a decision tree classifier, an accuracy of 86% was achieved for the classification of walk, climb stairs, stand, sit, and lay down. The results obtained suggest that the smartphone's inertial sensors could be used for an accurate physical activity classification even with real-time requirements.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.