As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Hybrid GPU/CPU clusters are becoming very popular in the scientific computing community, as attested by the number of such systems present in the Top 500 list. In this paper, we address one of the key algorithms for scientific applications: the computation of sparse matrix-vector products that lies at the heart of iterative solvers for sparse linear systems.
We detail how design patterns for sparse matrix computations enable us to easily adapt to such a heterogeneous GPU/CPU platform using several sparse matrix formats in order to achieve best performance; then, we analyze static load balancing strategies for devising a suitable data decomposition and propose our approach. We discuss our experience in using different sparse matrix formats and data partitioning algorithms with a number of computational experiments executed on three different hybrid GPU/CPU platforms.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.