As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Virtual Reality (VR) is increasingly being used in combination with psycho-physiological measures to improve assessment of distress in mental health research and therapy. However, the analysis and interpretation of multiple physiological measures is time consuming and requires specific skills, which are not available to most clinicians. To address this issue, we designed and developed a Decision Support System (DSS) for automatic classification of stress levels during exposure to VR environments. The DSS integrates different biosensor data (ECG, breathing rate, EEG) and behavioral data (body gestures correlated with stress), following a training process in which self-rated and clinical-rated stress levels are used as ground truth. Detected stress events for each VR session are reported to the therapist as an aggregated value (ranging from 0 to 1) and graphically displayed on a diagram accessible by the therapist through a web-based interface.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.