

This paper describes a method for discovering URLs with contextually relevant deep-topics, and then propagating such information to collaborating users lacking such information. When a user is knowledgeable about a subject, their reasons for frequently browsing a URL extend beyond the fact that it is merely related to said subject. This paper's method includes an algorithm for discovering the surface-topic of a URL, and the underlying deep-topic that a user is truly interested in with respect to a given URL. The deep-topic extraction process works by using URLs linked together through a user's behavioral browsing patterns in order to discover the surface or group-topic of surrounding URLs, and then subtracting those topics to discover hidden deeper topics. This paper describes the three parts of the method: Information Extraction, Propagation, and Verification & Integration, which together form a method with high levels of parallelism due to its distributed and independent nature. This paper also discusses concrete usage-scenarios for the included method, and data structures which would support the implementation of this paper's method.