As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Twitter is one of the largest social media platforms in the world. Although Twitter can be used as a tool for getting valuable information related to a topic of interest, it is a hard task for us to find users to follow for this purpose. In this paper, we present a method for Twitter user recommendation based on user relations and taxonomical analysis. This method first finds some users to follow related to the topic of interest by giving keywords representing the topic, then picks up users who continuously provide related tweets from the user list. In the first phase we rank users based on user relations obtained from tweet behaviour of each user such as retweet and mention (reply), and we create topic taxonomies of each user from tweets posted during different time periods in the second phase. Experimental results show that our method is very effective in recommending users who post tweets related to the topic of interest all the time rather than users who post related tweets just temporarily.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.