As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Predictive maintenance is becoming more and more important for the commercial vehicle manufactures, as focus shifts from product- to service-based operation. The idea is to provide a dynamic maintenance schedule, fulfilling specific needs of individual vehicles. Luckily, the same shift of focus, as well as technological advancements in the telecommunication area, make long-term data collection more widespread, delivering the necessary data.
We have found, however, that the standard attribute-value knowledge representation is not rich enough to capture important dependencies in this domain. Therefore, we are proposing a new rule induction algorithm, inspired by Michalski's classical AQ approach. Our method is aware that data concerning each vehicle consists of time-ordered sequences of readouts. When evaluating candidate rules, it takes into account the composite performance for each truck, instead of considering individual readouts in separation. This allows us more exibility, in particular in defining desired prediction horizon in a fuzzy, instead of crisp, manner.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.