As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this paper, we introduce a new facial-expression analysis system designed to automatically recognize facial expressions, able to manage facial-expression intensity variation as well as reducing the doubt and confusion between facial-expression classes. Our proposed approach introduces a new method to segment efficiently facial feature contours using Vector Field Convolution (VFC) technique. Relying on the detected contours, we extract facial feature points which go with facial-expression deformations. Then we have modeled a set of distances among the detected points to define prediction rules through data mining technique. An experimental study was conducted to evaluate the performance of our proposed solution under varying factors.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.