As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The recovery of sparse signals in underdetermined systems is the focus of this paper. We propose an expanded version of the Variational Garrote, originally presented by Kappen (2011), which can use multiple measurement vectors (MMVs) to further improve source retrieval performance. We show its superiority compared to the original formulation and demonstrate its ability to correctly estimate both the sources' location and their magnitude. Finally evidence is given of the high performance of the proposed algorithm compared to other MMV models.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.