As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Mixtures of truncated basis functions (MoTBFs) have been recently proposed as a generalisation of mixtures of truncated exponentials and mixtures of polynomials for modelling univariate and conditional distributions in hybrid Bayesian networks. In this paper we analyse the problem of incorporating prior knowledge when learning univariate MoTBFs. We consider scenarios where the prior knowledge is expressed as an MoTBF that is combined with another MoTBF density estimated from the available data. An important property, from the point of view of inference in hybrid Bayesian networks, is that the density yielded after the combination is again an MoTBF. We show the performance of the proposed method in a series of experiments with simulated data. The experiments suggest that the incorporation of prior knowledge improves the estimations, especially with scarce data.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.