As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Clustering algorithms have been used to divide genes into groups according to the degree of their expression similarity. Such a grouping may suggest that the respective genes are correlated and/or co-regulated, and subsequently indicates that the genes could possibly share a common biological role. In this paper, four clustering algorithms are investigated: k-means, cut-clustering, spectral and expectation-maximization. The algorithms are benchmarked against each other. The performance of the four clustering algorithms is studied on time series expression data using Dynamic TimeWarping distance in order to measure similarity between gene expression profiles. Four different cluster validation measures are used to evaluate the clustering algorithms: Connectivity and Silhouette Index for estimating the quality of clusters, Jaccard Index for evaluating the stability of a cluster method and Rand Index for assessing the accuracy. The obtained results are analyzed by Friedman's test and the Nemenyi post-hoc test. K-means is demonstrated to be significantly better than the spectral clustering algorithm under the Silhouette and Rand validation indices.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.